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Abstract. Tailoring thermoelectric materials for specific designs and applications has been gaining mo-
mentum during past three decades. Initially confined to conventional (bulk) framework an entirely new
scenario emerged with inclusion of low-dimensional structures in the scheme of things. The paper exam-
ines the effect of size reduction on phonon and electron properties in two-dimensional (quantum well)
structures with an aim to maximize thermoelectric performance. The formulation has been applied to
silicon-germanium quantum wells with well width ranging from 50–500 Å aimed at finding best alloy
combination for thermoelectric applications.

PACS. 73.50.Lw Thermoelectric effects – 73.63.Hs Quantum wells – 73.61.Ey III-V semiconductors

1 Introduction

Search for advanced thermoelectric materials with im-
proved figure-of-merit has been closely linked with an in-
creased understanding of electronic and phonon properties
in semiconductors. During the early part of the second
half of twentieth century considerable research activity in
seeking reduction in phonon thermal transport resulted
in the study of highly disordered systems [1–3]. The ef-
fect of disorder scattering was to substantially scatter high
frequency phonons, the remaining low frequency phonons
could then be effectively scattered at grain boundaries.
This led to in-depth study of fine-grained disordered semi-
conductor alloys such as PbTe-SnTe, PbTe-PbSe and Si-
Ge to name only a few. These studies [4–6] veered around
bulk electron and phonon properties with efforts to maxi-
mize the scattering of phonons without adversely affecting
the electrical to thermal conductivity ratio σ/λ. Thermo-
electric behavior of bulk material is expressed in terms of
transport coefficients such as electrical conductivity, See-
beck coefficient and thermal conductivity [7–9].

The next logical step in the search for advanced ma-
terials was to go beyond the usual bulk framework. In
the fine-grained structures or thin films phonon (electron)
density-of-states and dispersion relations hold good and
the only effect of grain size appears in phonon (electron)
mean-free-path due to increased boundary scattering. A
further size reduction brings into focus quantum effects
which may include energy distribution and energy-wave
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vector relations. Last two decades have witnessed an in-
tense research activity in low-dimensional structures that
could provide improved thermoelectric materials [10–17].

Model calculations for free-standing as well as em-
bedded well structures [18–24] take into consideration
modifications of the transport equations in the contin-
uum approximation and with proper boundary conditions.
Phonon modes in wells have been calculated by Bannov
et al. [25] and Svizhenko et al. [26]. By solving the elas-
ticity equation

∂2 �u

∂ t2
= v2

l ∇2�u +
(
v2

l − v2
t

)
graddiv �u (1)

where �u is the displacement vector, and vl and vt are
the speeds of longitudinal and transverse elastic waves
(in the bulk), respectively. It is important to take ac-
count of the boundary conditions in free-standing wells
where normal component of the stress tensor vanishes.
This brings about a significant change in phonon disper-
sion relations. The boundary condition will change for the
embedded structure with the normal component of the
stress tensor being nonzero whereas the displacement van-
ishes at the boundary.

In this paper we present an analysis of the effect of
spatial confinement of acoustic phonons on thermal trans-
port coefficients and thermoelectric figure-of-merit of free-
standing quantum well structures for different alloy com-
positions of SiXGe(1−X) (X ranging from 0.3 upto 0.8)
aimed at finding the best alloy composition for thermo-
electric applications.
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2 Theory

2.1 Thermal transport

Study of thermal transport in semiconductors requires the
contributions from phonons as well as electron (hole). In
bulk, phonon contribution is largely influenced by phonon-
phonon scattering and disorder scattering. However, in
quantum wells a significant drop in phonon group velocity
is observed due to their spatial confinement. The change
in phonon dispersion may lead to a decrease in-group ve-
locity, resulting in a corresponding increase in relaxation
rates. This may have a significant effect on the in-plane
lattice thermal conductivity [27]. The lattice thermal con-
ductivity at a temperature T is given as

λL =
1

2 π2

∫
v2

G (cosφ)2 τC (q) Cph (q) d3q (2)

where vG is the phonon group velocity, φ is the angle
between the group velocity and direction of heat flow,
q is phonon wave vector, τC (q) is combined phonon re-
laxation time, Cph (q) is specific heat. For in-plane trans-
port along x-axis, cosφ = 1. Within the framework of
Debye approximation, the effect of acoustic phonon con-
finement could lead to decreased phonon group velocity,
increased phonon relaxation rate and modified phonon
density of states (PDOS). Disregarding the PDOS mod-
ification, the expression for lattice thermal conductivity
transforms as [27]
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where x = hυ
kB T , kB is Boltzmann constant, θ is Debye

temperature.
Considering the fact that only those processes that do

not conserve crystal momentum contribute to the lattice
thermal conductivity, τC (x) takes into account processes
such as boundary scattering (τB), mass-difference scatter-
ing (τI) and three phonon Umklapp scattering (τU ) [18].
The total relaxation rate is defined as

1
τC

=
1
τU

+
1
τI

+
1
τB
. (4)

The phonon dispersion in quantum well structures is used
in calculating the relaxation rates which is quite differ-
ent from the bulk. Mass-difference scattering is strongly
affected by the change in average phonon group velocity.
In the present paper we propose to investigate the Si-Ge
quantum well structures, hence this scattering mechanism
is of main interest and is given by [28,29]

1
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V0 ω

4

4π v3
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∑
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fi [1 − (Mi/M)]2 (5)

where V0 is the volume per atom, Mi is the mass of an
atom, and fi is the fractional content of atoms with mass

Mi and M is mean atomic mass. Phonon-phonon scatter-
ing relaxation time is assumed to be same as in bulk except
for the modification in group velocity due to confinement
effects. Balandine et al. [18] have reported a small contri-
bution of umklapp processes with major scattering caused
by impurity. The relaxation time for boundary scattering
considering semi empirical relation is given by [30]

1
τB

=
vG

a
(6)

where a is the width of quantum well.

2.2 Phonon confinement

Phonon scattering rates strongly depend on group velocity
and influence thermal transport. Free-standing structures
may be as small as a few interatomic distances, and also
the electrons (holes) energy in these structures is quan-
tized. Phonon system is also quantized and quantization
of the acoustic phonon spectrum in a similar manner to
that of electron quantization should occur. Three types of
confined acoustic modes in quantum well structures are
characterized by their distinctive symmetries [31]; Shear
waves (S), Dilatational waves (D) and Flexural waves (F ).
The shear mode has only one nonzero component of dis-
placement vector in the perpendicular direction of wave
propagation. The dilatational and flexural phonon modes
have two non-zero components in which one component
lies in the direction of propagation. It is possible to show
analytically the dependence of the in-plane phonon group
velocity on the cross-plane phonon quantisation for shear
modes.

For evaluating in-plane thermal conductivity only
shear waves are considered. Quantisation effects will be
significant for transverse waves with atomic displacement
along z-direction. For cross-plane thermal transport di-
latational and flexural modes will show quantization ef-
fect. The phonon dispersion relation for shear modes is
written as [31]

ωn = vT

√(
q2Z,n + q2X

)
(7)

here q = qX is the phonon wave vector along in-plane
direction and n denotes the different branches of the same
polarization type, vT is the transverse phonon velocity in
the bulk. The phonon wave vector along the confinement
direction (qZ,n) is quantized. The dispersion relation can
now be written as

ωn = vT

√((π n
a

)2

+ q2
)
. (8)

The phonon group velocity for each mode type in the nth
branch is defined as vG,n = ∂ωn

∂q , and is expressed as

vG,n (q) =
vT√(

π n
q a

)2

+ 1

. (9)
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Expressing group velocity in terms of phonon energy

vG,n (�ω) = vT

√
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. (10)

In order to obtain resulting average group velocity, all
modes are considered for a given energy

v̄G (�ω) =

∑

n
vG,n (�ω) Nn (ω)

∑

n
Nn (ω)

(11)

where vG,n is the group velocity of nth mode and Nn (ω)
is number of oscillators with frequency ω on the nth mode
and is given as Nn (ω) ∝ exp

(
− n � ω

kB T

)
.

After obtaining average phonon group velocity for all
mode contributions at a given temperature and width
(of quantum well), the relaxation rate is obtained by
equation (4) which is now different from the bulk relax-
ation rate as it consists the confinement effect of acoustic
phonons in quantum well structures. The lattice thermal
conductivity for quantum wells can be obtained with the
help of equation (3).

2.3 Electronic properties

In quantum well structures, electron density of states is
significantly different from usual parabolic variation in
the bulk. The size quantum limit (SQL) assumption [32]
that electrons occupy only the lowest sub-band is incor-
porated into theoretical calculations to obtain size related
effects on transport coefficients. A quantum well is re-
lated to electron confinement only in one direction (say
z-direction) and the particle is free to move in other direc-
tions. The electron wave function and energy eigenvalues
are given [33]
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(
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y.
mz is effective mass of electron along confinement axis

and m is effective mass of electron along free axis. Ω is
total volume of the sample and ‘a’ is well width. ‘n’ is a
quantum number. For two-dimensional structures acoustic
phonon scattering relaxation rate can be written as [34]

1
τac

=
3E2
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ρ �2a
(14)

where, ED is deformation potential, ρ is density of ma-
terial. The electrical conductivity, Seebeck coefficient and

Lorenz factor can be written as [33]
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where integrals I1, I2, I3, I4, I5 and I6 are defined as
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, Fermi distribution function
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kBT and ηn = EF

kBT − En

kBT . We
have taken the contribution of only lowest sub-band in
the framework of SQL.

2.4 Results and discussion

SiXGe(1−X) alloys are amongst the most thoroughly in-
vestigated alloy systems for their usefulness in thermoelec-
tric high temperature applications. However, most of these
studies are confined to bulk properties. In the present
study we have examined the usefulness of the alloy system
in the form of quantum well structures. The study centers
primarily on SiXGe(1−X) alloys for X ranging from 0.3
upto 0.8 to obtain the best alloy composition for ther-
moelectric purposes. Physical parameters for Si and Ge
at room temperature are presented in Table 1. Relevant
parameters for various alloy compositions have been ob-
tained by linear interpolation. However, effective electron
masses for alloy combinations with x � 0.15 are same as
that of silicon [35].

We shall be primarily interested in the in-plane trans-
port. Calculations of phonon group velocity as function of
in-plane wave vector for shear modes have been performed



506 The European Physical Journal B

Table 1. Physical parameters for Si and Ge at room temperature

Density(ρ) Transverse Lattice Parameter Elastic Deformation ml
m0

mt
m0

(Kg/m3) Phonon velocity (A◦) Constant (C11) Potential (ED) (eV)
(vT ) (m/s) (1011Nm−2)

Si 2330 5845 5.43 1.66 12.8 0.98 0.19
Ge 5323 3542 5.658 1.28 12.9 1.6 0.08

Fig. 1. Variation of the phonon group velocity plotted against
in-plane wave vector for shear modes in a 100 Å wide quan-
tum well for the alloy composition Si0.5Ge0.5. The nine lowest
phonon modes are shown.

Fig. 2. Phonon group velocity for nine lowest phonon modes
plotted against in-plane wave vector for shear modes in a 100 Å
wide quantum well for alloy composition Si0.7Ge0.3.

for various alloy combinations and well widths. However,
here we present the results only for two alloy combinations
(X = 0.5, 0.7) for 100 Å well width in Figures 1 and 2.
The dispersion between various branches is significant in
the region of ‘q’ ranging from 0.5 to 4 nm−1.

Fig. 3. Plot of average group velocity against well width for
different alloy compositions of SiXGe(1−X) with X ranging
from 0.3 to 0.8.

Figure 3 shows variation of average group velocity
against well width for different alloy compositions taking
into consideration the contributions of all phonon modes
in each alloy. It is obvious that the value of average group
velocity is lower for lower silicon content. The value of av-
erage group velocity for each alloy composition becomes
almost half the bulk value for 100 Å well width. More-
over, average group velocity v̄G falls rapidly below 100 Å.
For the lower values of well width the dispersion in the
curves is small and around 50 Å and below v̄G decreases
sharply and is relatively independent of variation in alloy
composition.

Figure 4 displays the variation of room temperature
lattice thermal conductivity for different alloy composi-
tions of SiXGe(1−X) against well width. One can notice
immediately that the alloy combination which gives min-
imum lattice thermal conductivity is not very different
from that of the bulk. In the bulkX ∼ 0.7 composition has
the lowest value of lattice thermal conductivity. Phonon
scattering rate is mainly affected by alloy disorder with
major changes resulting from the effect of confinement on
phonon group velocity. The strong effect of spatial con-
finement of acoustic phonons on lattice thermal conduc-
tivity λL is clearly evident from the results.

Figure 5 shows variation of electrical conductivity
against well width ‘a’ of free-standing quantum wells of
SiXGe(1−X)at T = 300 K. The value of electrical conduc-
tivity is almost constant for higher value of ‘a’ in each
alloy composition and decreases rapidly below 100 Å.
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Fig. 4. Variation of lattice thermal conductivity versus well
width at room temperature for different alloy compositions of
SiXGe(1−X).

Fig. 5. Plot of electrical conductivity against well width at
T = 300 K.

Figure 6 provides the variation of Seebeck coeffi-
cient with well width and alloy compositions at room
temperature. The Seebeck coefficient is independent of al-
loy composition and increases sharply below 100 Å.

Figure 7 gives the variation of optimized dimension-
less figure-of-merit against well width. For almost all al-
loy compositions the value of ZTopt approaches 2 or more.
For quantum wells the alloy composition for best thermo-
electric performance corresponds to X ∼ 0.4–0.5 unlike
the bulk case where the best composition corresponds to
X ∼ 0.7 [36]. The sharp rise in ZTopt below 100 Å is
of significance in thermoelectric applications. This sharp
rise is primarily due to changes both in Seebeck coef-
ficient as well as the electrical to thermal conductivity
ratio which tend to favour high values of thermoelectric
figure-of-merit. It is due to significant contributions from

Fig. 6. Variation of Seebeck coefficient with well width for
various alloy combinations.

Fig. 7. Optimized dimensionless figure-of-merit plotted
against well width at room.

electronic properties that the best alloy combination is
no more determined solely by changes in lattice thermal
transport as in bulk.
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